Sustained CPEB-Dependent Local Protein Synthesis Is Required to Stabilize Synaptic Growth for Persistence of Long-Term Facilitation in Aplysia

نویسندگان

  • Maria Concetta Miniaci
  • Joung-Hun Kim
  • Sathyanarayanan V. Puthanveettil
  • Kausik Si
  • Huixiang Zhu
  • Eric R. Kandel
  • Craig H. Bailey
چکیده

The time course of the requirement for local protein synthesis in the stabilization of learning-related synaptic growth and the persistence of long-term memory was examined using Aplysia bifurcated sensory neuron-motor neuron cultures. We find that, following repeated pulses of serotonin (5-HT), the local perfusion of emetine, an inhibitor of protein synthesis, or a TAT-AS oligonucleotide directed against ApCPEB blocks long-term facilitation (LTF) at either 24 or 48 hr and leads to a selective retraction of newly formed sensory neuron varicosities induced by 5-HT. By contrast, later inhibition of local protein synthesis, at 72 hr after 5-HT, has no effect on either synaptic growth or LTF. These results define a specific stabilization phase for the storage of long-term memory during which newly formed varicosities are labile and require sustained CPEB-dependent local protein synthesis to acquire the more stable properties of mature varicosities required for the persistence of LTF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neuronal Isoform of CPEB Regulates Local Protein Synthesis and Stabilizes Synapse-Specific Long-Term Facilitation in Aplysia

Synapse-specific facilitation requires rapamycin-dependent local protein synthesis at the activated synapse. In Aplysia, rapamycin-dependent local protein synthesis serves two functions: (1) it provides a component of the mark at the activated synapse and thereby confers synapse specificity and (2) it stabilizes the synaptic growth associated with long-term facilitation. Here we report that a n...

متن کامل

Aplysia CPEB Can Form Prion-like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation

Prions are proteins that can assume at least two distinct conformational states, one of which is dominant and self-perpetuating. Previously we found that a translation regulator CPEB from Aplysia, ApCPEB, that stabilizes activity-dependent changes in synaptic efficacy can display prion-like properties in yeast. Here we find that, when exogenously expressed in sensory neurons, ApCPEB can form an...

متن کامل

Synapse-Specific, Long-Term Facilitation of Aplysia Sensory to Motor Synapses: A Function for Local Protein Synthesis in Memory Storage

The requirement for transcription during long-lasting synaptic plasticity has raised the question of whether the cellular unit of synaptic plasticity is the soma and its nucleus or the synapse. To address this question, we cultured a single bifurcated Aplysia sensory neuron making synapses with two spatially separated motor neurons. By perfusing serotonin onto the synapses made onto one motor n...

متن کامل

A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis

In a culture system where a bifurcated Aplysia sensory neuron makes synapses with two motor neurons, repeated application of serotonin (5-HT) to one synapse produces a CREB-mediated, synapse-specific, long-term facilitation, which can be captured at the opposite synapse by a single pulse of 5-HT. Repeated pulses of 5-HT applied to the cell body of the sensory neuron produce a CREB-dependent, ce...

متن کامل

cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis.

Behavioral sensitization leads to both short- and long-term enhancement of synaptic transmission between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia. Serotonin (5-HT), a transmitter important for short-term sensitization, can evoke long-term enhancement of synaptic strength detected 1 day later. Because 5-HT mediates short-term facilitation through adenosine 3',5'-mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008